Run Qwen3 Next 80B A3B on macOS: Step-by-Step 2025 Guide

Run Qwen3 Next 80B A3B on macOS Apple Silicon. Step-by-step setup, optimizations, and deployment guide for fast, private, and cost-effective AI inference.

One of the most powerful and resource-efficient open-source models available today is Qwen3 Next 80B A3B, a next-generation sparse Mixture-of-Experts (MoE) model from Alibaba’s Qwen team.

This comprehensive guide explains everything you need to know about running Qwen3 Next 80B A3B on macOS—covering model architecture, system requirements, installation, deployment, optimizations, troubleshooting, and use cases.


Understanding Qwen3 Next 80B A3B

Qwen3 Next 80B A3B is designed for scalable efficiency and high performance, offering state-of-the-art reasoning and long-context handling while drastically lowering computational overhead.

Key Architecture Features

  • Sparse MoE Efficiency: 80B parameters total, but only ~3B activated per inference step, routing inputs through a subset of experts.
  • Hybrid Attention: Combines gated DeltaNet and gated attention blocks, enabling ultra-long context (native 262K tokens, extendable toward 1M).
  • Multi-Token Prediction (MTP): Generates multiple tokens simultaneously for accelerated inference.
  • Training Scale: Pre-trained on 15T tokens; tuned for reasoning, code generation, and multilingual tasks.
  • Performance Gains: Outperforms smaller dense models while cutting compute costs by ~90%.

The result is a model that handles reasoning, code generation, multilingual applications (119+ languages), long-context dialogue, and agent workflows with exceptional efficiency.


Why Run Qwen3 Next 80B A3B on macOS?

Apple Silicon delivers strong advantages for local AI workloads:

  • Privacy: Data stays on-device, reducing risks from third-party APIs.
  • Latency: Local inference is faster than cloud-based requests.
  • Cost Savings: Avoids recurring GPU cloud fees.
  • Developer Flexibility: Full control over tuning, deployment, and integration.

With Apple’s unified memory architecture and Metal acceleration, Qwen3 Next 80B A3B can be used effectively on macOS with sufficient RAM and storage.


System Requirements

Component Minimum Recommended
macOS Version 13.5 Ventura Latest macOS 14+
Chip Apple Silicon M1 M2/M3 Pro or Max
RAM (Unified) 32 GB 64 GB+
Disk Space 42 GB free SSD required
Python 3.9+ Latest stable version
Dependencies MLX metal acceleration MLX-LM v4+

Note: Intel Macs are not supported for MLX quantized builds. Alternative setups (e.g., llama.cpp with GGUF) are possible but slower.


Installation and Setup Guide

Step 1: Install Prerequisites

Update Homebrew, install Python, pip, and Git:

brew install python git
python3 -m pip install --upgrade pip setuptools

Step 2: Install MLX-LM

Install the Metal-accelerated framework for Apple Silicon:

pip install mlx-lm

Step 3: Download Qwen3 Next 80B A3B Model

The 4-bit MLX quantized version is optimized for macOS:

from mlx_lm import load, generate

model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")

output = generate(
    model,
    tokenizer,
    prompt="Explain the Chudnovsky algorithm to compute π.",
    max_tokens=256
)
print(output)

Step 4: Run via CLI

mlx_lm generate \
  --model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
  --prompt "What is the capital of France?" \
  --max-kv-size 512 \
  --max-tokens 256

Advanced Optimizations

Multi-Token Prediction (MTP)

Accelerates inference by generating multiple tokens per step.

  • SGLang Deployment:
pip install 'sglang[all]>=0.5.2'

python -m sglang.launch_server \
  --model-path Qwen/Qwen3-Next-80B-A3B-Instruct \
  --port 30000 \
  --context-length 262144 \
  --speculative-algo NEXTN \
  --speculative-num-steps 3 \
  --speculative-num-draft-tokens 4
  • vLLM Deployment:
pip install vllm

vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct \
  --port 8000 \
  --max-model-len 262144 \
  --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'

Extend Context Window

Enable up to ~1M tokens with RoPE scaling:

{
  "rope_scaling": {
    "rope_type": "yarn",
    "factor": 4.0,
    "original_max_position_embeddings": 262144
  }
}

Detailed Step-by-Step Installation Script

1. Prerequisites

Before starting, ensure your system meets the following requirements:

  • macOS version: 13.5 Ventura or later
  • Chip: Apple Silicon (M1, M2, M3 — Pro/Max preferred)
  • Unified RAM: ≥ 32 GB (64 GB+ recommended)
  • Disk space: ≥ 50 GB free SSD
  • Python: 3.9 or newer (via Homebrew)
  • Homebrew: Installed (see brew.sh)

2. One-Shot Installation Script

Save the script below as install_qwen3.sh, then make it executable and run it.

#!/usr/bin/env bash
# install_qwen3.sh — Installs Qwen3 Next 80B A3B on macOS (Apple Silicon)

set -euo pipefail
echo "=== Starting Qwen3 Next 80B A3B Installation ==="

# 1. Update system & Homebrew
echo "- Updating macOS and Homebrew"
softwareupdate --install --all --quiet || true
if ! command -v brew &> /dev/null; then
  echo "- Installing Homebrew"
  /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
fi
brew update

# 2. Install Python
echo "- Installing Python 3"
brew install python@3.11
export PATH="/usr/local/opt/python@3.11/bin:$PATH"

# 3. Upgrade pip, setuptools, wheel
echo "- Upgrading pip, setuptools, wheel"
python3 -m pip install --upgrade pip setuptools wheel

# 4. Install Git
echo "- Installing Git"
brew install git

# 5. Create and activate virtual environment
echo "- Setting up Python virtual environment"
python3 -m venv ~/.qwen3_env
source ~/.qwen3_env/bin/activate

# 6. Install MLX-LM (Metal backend)
echo "- Installing MLX-LM (Metal-accelerated LLM support)"
pip install --upgrade mlx-lm

# 7. Verify Metal backend availability
echo "- Verifying Metal backend"
python3 - << 'PYCODE'
import torch, mlx_lm
print("Torch backend:", torch.backends.mps.is_available(), "MPS GPU count:", torch.backends.mps.device_count())
PYCODE

# 8. Download quantized Qwen3 model
echo "- Downloading Qwen3 Next 80B A3B quantized model"
mkdir -p ~/models/qwen3
cd ~/models/qwen3
python3 - << 'PYCODE'
from mlx_lm import download_model
download_model("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
PYCODE

echo "=== Installation Complete! ==="
echo "Run 'source ~/.qwen3_env/bin/activate' to start using Qwen3 Next 80B A3B."

Make it executable and run:

chmod +x install_qwen3.sh
./install_qwen3.sh

3. Basic Usage Examples

Activate your environment before running:

source ~/.qwen3_env/bin/activate

3.1 Python Script Example

Create run_qwen3.py:

#!/usr/bin/env python3
# run_qwen3.py — Simple inference with Qwen3 Next 80B A3B

from mlx_lm import load, generate

def main():
    model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
    
    prompt = (
        "Summarize the benefits of Apple Silicon for AI inference "
        "and compare it to x86-based GPUs in 300 words."
    )
    
    output = generate(
        model,
        tokenizer,
        prompt=prompt,
        max_tokens=350,
        temperature=0.1
    )
    print("\n=== Model Output ===\n")
    print(output)

if __name__ == "__main__":
    main()

Run it:

python run_qwen3.py

3.2 CLI Usage Reference

Run quick prompts directly from the terminal:

mlx_lm generate \
  --model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
  --prompt "Explain the Chudnovsky algorithm for computing π." \
  --max-tokens 200 \
  --temperature 0.2

Key CLI flags:

  • --model: Model identifier or local path
  • --prompt: Input text prompt
  • --max-tokens: Number of tokens to generate
  • --temperature: Sampling randomness (0–1)
  • --max-kv-size: KV-cache size for context extension
  • --num-beams: Beam search count

4. Advanced Server Deployment

Deploy Qwen3 as a local API server using SGLang or vLLM.

4.1 SGLang Server

pip install 'sglang[all]>=0.5.2'

sglang launch \
  --model-path ~/models/qwen3/halley-ai_Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
  --port 8080 \
  --max-context-length 262144 \
  --speculative-algo NEXTN \
  --speculative-num-steps 3 \
  --speculative-num-draft-tokens 4

Query with curl:

curl -X POST http://localhost:8080/v1/generate \
  -H "Content-Type: application/json" \
  -d '{ "prompt": "What is the capital of France?", "max_tokens": 50 }'

4.2 vLLM Server

pip install vllm

vllm serve \
  ~/models/qwen3/halley-ai_Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
  --port 8000 \
  --max-model-len 262144 \
  --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'

Sample request:

curl -X POST http://localhost:8000/generate \
  -H "Content-Type: application/json" \
  -d '{ "prompt": "List three use cases for MoE models." }'

5. Context Extension & Fine-Tuning

Extend Context Length

Edit config.json to expand maximum context:

{
  "rope_scaling": {
    "rope_type": "yarn",
    "factor": 4.0,
    "original_max_position_embeddings": 262144
  }
}

Fine-Tune with LoRA or PEFT

pip install peft transformers accelerate

python finetune.py \
  --base_model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
  --dataset_path ./my_data.jsonl \
  --output_dir ./qwen3_ft \
  --num_train_epochs 3 \
  --per_device_train_batch_size 1 \
  --lora_rank 16

Practical Examples

Below are two end-to-end, real-world examples demonstrating how to leverage Qwen3 Next 80B A3B on macOS using the MLX-LM framework. Each example includes setup instructions, prompt design, Python code snippets, and sample outputs.

Example 1: Technical Documentation Generation

Scenario

You are creating a new API for your team and need concise, structured documentation for a complex Python function.

Setup & Code

from mlx_lm import load, generate

# Load the 4-bit quantized Qwen3 Next 80B A3B model
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")

# Define your prompt
prompt = """
You are an expert API documentation writer.
Generate clear, Markdown-formatted documentation for the following Python function:

def process_image_batch(images: List[Image], resize: Tuple[int,int], enhance: bool = False) -> List[Image]:
"""Processes a batch of images by resizing and optional enhancement."""
# Implementation omitted


Include:
- Function description
- Parameters with types
- Return value
- Example usage
"""

# Generate and print the documentation
output = generate(
    model,
    tokenizer,
    prompt=prompt,
    max_tokens=300,
    temperature=0.2
)
print(output)

Sample Output

## process_image_batch

**Description:**  
Processes a list of images by resizing each to the specified dimensions and applying optional enhancement.

**Parameters:**  
- `images: List[Image]` — A list of PIL Image objects to process.  
- `resize: Tuple[int, int]` — Target width and height in pixels.  
- `enhance: bool` (default `False`) — If `True`, apply automatic contrast and sharpness enhancement.

**Returns:**  
- `List[Image]` — A new list of processed Image objects.

**Example Usage:**

from PIL import Image
imgs = [Image.open(path) for path in ["a.jpg","b.jpg"]]
processed = process_image_batch(imgs, resize=(800,600), enhance=True)
for img in processed:
img.save("out_"+img.filename)


Example 2: Interactive Data Analysis Assistant

Scenario

You have a CSV containing sales data and need a quick summary and visualization plan directly in Python.

Setup & Code

from mlx_lm import load, generate

# Load the model
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")

# Prompt requesting analysis steps
prompt = """
You are a data science assistant.
Given a pandas DataFrame `df` containing columns: 'date', 'region', 'sales_usd', provide:
1. A concise summary of key trends.
2. Python code using matplotlib or seaborn to plot monthly total sales.

Assume `df` is already loaded.
"""

# Generate suggestions
output = generate(
    model,
    tokenizer,
    prompt=prompt,
    max_tokens=400,
    temperature=0.3
)
print(output)

Sample Output

**1. Summary of Key Trends:**  
- Overall sales increased by ~15% over the last year, with a peak in December.  
- Region ‘APAC’ shows the fastest growth (+25%), while ‘EMEA’ remains flat.

**2. Visualization Code:**

Advanced Usage and Optimizations

Multi-Token Prediction (MTP)

MTP enables speculative decoding, generating multiple tokens in parallel for faster inference. Currently best supported via dedicated frameworks like SGLang or vLLM rather than raw Hugging Face Transformers.

To leverage MTP, consider deploying an API server on your Mac using:

  • SGLang: Lightweight serving with OpenAI-compatible API.

bashpip install 'sglang[all]>=0.5.2'

python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --context-length 262144 --mem-fraction-static 0.8 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4

  • vLLM: High-throughput inference engine supporting MTP.

bashpip install 'vllm>=0.10.2'

vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --max-model-len 262144 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'

Extend Context Length Beyond Native

The model supports up to 262K tokens natively, extendable to about 1 million tokens via RoPE scaling with YaRN method within supported frameworks.

Modify the config.json in model files to add:

json{
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 262144
}
}

Start servers or inference with compatible options to use this extended context—ideal for documents or chatbots needing ultra-long memory.


Use Cases for Qwen3 Next 80B A3B on macOS

  • Research and Development: Run complex natural language understanding tasks with local control.
  • Code Generation: Assistance for developers with fast and detailed coding help.
  • Content Creation: Generate, edit, and optimize textual content privately.
  • Customer Support Automation: Use instruction-tuned capabilities for robust chatbot building.
  • Agentic AI: Supports tool-calling and multi-step task execution workflows with consistent instructions.
  • Multilingual Applications: Supports 119 languages, suitable for internationalized projects.

Troubleshooting and Performance Tips

  • Memory Errors: Ensure minimal other tasks are running; consider upgrading RAM if frequent crashes occur.
  • Model Load Failures: Confirm macOS version (13.5+), Apple Silicon chip, and Python environment compatibility.
  • Slower Performance: Use 4-bit MLX quantized version specifically designed for Apple Silicon Metal acceleration.
  • Long Context Failures: If context above 32K causes crashes, reduce context length or tweak rope_scaling factors.
  • Keep Terminal Open: MLX-LM runs in background when executed via terminal or scripts.

Summary

Running Qwen3 Next 80B A3B on macOS is both achievable and practical with Apple Silicon. Using MLX-LM’s 4-bit quantization and Metal acceleration, users can deploy one of the most advanced open-source LLMs directly on their Mac—enabling fast, private, and cost-effective AI inference.

References

  1. Running Qwen3 8B on Windows: A Comprehensive Guide
  2. Run Qwen 3 8B on Mac: An Installation Guide
  3. Run Qwen3-8B on Ubuntu
  4. Gemma 3 vs Qwen 3